
Tutorial

2D CONVOLUTION AS MATRIX MULTIPLICATION USING TOEPLITZ MATRICES

By: Ali Salehi
AliSaaalehi@gmail.com

August 20, 2018

Contents

1 What is the purpose? 2

2 Why do we do that? 2

3 What is in this document? 2

4 What is a Toeplitz matrix? 2

5 One more definition: Doubly Blocked Toeplitz mtrix 3

6 Is this Convolution or Cross Correlation? 3

7 Step by Step 4
7.1 Input and Filter . 4
7.2 Calculate the final output size . 4
7.3 Zero-pad the filter matrix . 5
7.4 Toeplitz matrix for each row of the zero-padded filter 5
7.5 Create doubly blocked toeplitz matrix . 6
7.6 Convert the input matrix to a vector . 8
7.7 Multiply doubly blocked toeplitz matrix with vectorized input signal 9
7.8 Last step: reshape the result to a matrix form . 9

8 Compare the result with other convolution methods 10

9 To Do 11

10 References 11

Convolution as Matrix Multiplication Ali Salehi

1 What is the purpose?

Instead of using for-loops to perform 2D convolution on images (or any other 2D matrices) we can
convert the filter to a Toeplitz matrix and image to a vector and do the convolution just by one
matrix multiplication (and of course some post-processing on the result of this multiplication to
get the final result)

2 Why do we do that?

There are many efficient matrix multiplication algorithms, so using them we can have an efficient
implementation of convolution operation.

3 What is in this document?

Mathematical and algorithmic explanation of this process. I will put a naive Python implementation
of this algorithm to make it more clear.
Let’s start with some definition and basic operation:

4 What is a Toeplitz matrix?

Toeplitz matrix is a matrix in which each values along the main diagonal and sub diagonals are
constant. Matrix G is an example:

2 −1 0 · · · · · · · · · · · · 1

5 2 −1 0
...

−8 5 2 −1
. . .

...
... −8

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
...

. . . 5 2 −1 0
... −8 5 2 −1
1 · · · · · · · · · · · · −8 5 2

(1)

In a N ×N matrix, its elements are determined by a (2N − 1) length sequence

{tn| − (N − 1) ≤ n ≤ (N − 1)}

. So given a sequence tn we can create a Toeplitz matrix by following these steps:

• put the sequence in the first column of the matrix.

• shift it and put it in the next column. When shifting, the last element disappears and a new
element of the sequence appears. If there is no such an element, put zero in that location.

2

Convolution as Matrix Multiplication Ali Salehi

specifically:

T (m,n) = tm−n

t0 t−1 t−2 · · · · · · · · · · · · t−(N−1)

t1 t0 t−1 t−2
...

t2 t1 t0 t−1
. . .

...
... t2

.
...

...
. t−2

...
...

. . . t1 t0 t−1 t−2
... t2 t1 t0 t−1

t(N−1) · · · · · · · · · · · · t2 t1 t0

(2)

Be aware that when we are working with sequences that are defined just for n ≥ 0 values
for tn when n ≤ 0 should be considered as 0. For example 4 × 4 Toeplitz matrix for the
sequence f [n] = [1, 2, 3] will be:

1 0 0 0
2 1 0 0
3 2 1 0
0 3 2 1

 (3)

5 One more definition: Doubly Blocked Toeplitz mtrix

In the matrix A, all Aij are matrices. If the structure of A, with respects to its sub-matrices
is Toeplitz, then matrix A is called Block-Toeplitz.

A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

...
AM1 AM2 · · · AMN

 (4)

If each individual Aij also is a Toeplitz matrix then A is called Doubly Blocked
Toeplitz

6 Is this Convolution or Cross Correlation?

Most of the time, the word convolution in the deep learning literature is used instead of
cross-correlation, but here I am explaining the process for convolution as is known in the
signal processing community. Simply, for convolution we need to flip the filter (kernel) in
both vertical and horizontal directions, but for cross-correlation we don’t.

3

Convolution as Matrix Multiplication Ali Salehi

The method explained here performs the convolution (not correlation). Because of the
way it is implemented here, there is no need to flip the filter, but if you are doing an
example by hand and want to compare the results with the implemented method, remember
to consider the flipping step in your calculation.

7 Step by Step

Let’s explain the algorithm step by step using an example. Codes are written in python and
the numpy library is used all over the code.

Note: Remember that convolution is a commutative operation, so it does not change
the output if we switch the inputs for this operation. For simplicity, I will be calling one of
the inputs input or I and the other filter or F

7.1 Input and Filter

Input matrix that the filter will be convolved with it is:

I =

[
1 2 3
4 5 6

]
(5)

And let the filter be:

F =

[
10 20
30 40

]
(6)

Python code to define these two matrices is:

import numpy as np

inpu t s i g n a l
I = np.array([[1, 2, 3], [4, 5, 6]])

f i l t e r
F = np.array([[10, 20], [30, 40]])

7.2 Calculate the final output size

If the input signal is m1 × n1 and filter is m2 × n2 the size of the convolution will be

(m1 + m2 − 1)× (n1 + n2 − 1)

This is the size of full discrete linear convolution. One might just use some part of the
output based on the application. For example in deep learning literature you can use ”valid”
or ”same” as your padding mode. In these case just parts of the full output is used.

4

Convolution as Matrix Multiplication Ali Salehi

Proper zero padding should be done to get the correct output. Zero padding is the next
step.

number columns and rows o f t he inpu t
I row num , I col num = I.shape

number o f columns and rows o f t he f i l t e r
F row num , F col num = F.shape

c a l c u l a t e t he ou tpu t dimensions
output row num = I row num + F row num − 1
output col num = I col num + F col num − 1

7.3 Zero-pad the filter matrix

The next step is to zero pad the filter to make it the same size as the output. Zeros should
be added to the top and right sides of the filter.

ZeroPadded F =

 0 0 0 0
10 20 0 0
30 40 0 0

 (7)

zero pad the f i l t e r
F zero padded = np.pad(F, ((output row num − F row num , 0),

(0, output col num − F col num)),
’constant’, constant values=0)

’ ’ ’
F zero padded :
[[0 0 0 0]
[10 20 0 0]
[30 40 0 0]]
’ ’ ’

7.4 Toeplitz matrix for each row of the zero-padded filter

For each row of the zero-padded filter (F zero padded) create a Toeplitz matrix and store
them in a list. Matrix created using the last row goes to the first cell of this list.

5

Convolution as Matrix Multiplication Ali Salehi

ZeroPadded F =

 0 0 0 0
10 20 0 0
30 40 0 0

 (8)

F0 =

30 0 0
40 30 0
0 40 30
0 0 40

F1 =

10 0 0
20 10 0
0 20 10
0 0 20

F2 =

0 0 0
0 0 0
0 0 0
0 0 0

 (9)

Why these matrices have three columns? Why not two or 5? What is the
rule here?
The important point is that the number of columns of these generated Toeplitz matrices
should be same as the number of columns of the input (I) matrix.
In the code, I am using toeplitz() function from scipy.linalg library. One row of the F is
passed to this function and the function puts it as the first column of the its output matrix.
Then as it is explained before, this vector should be shifted down and be putted in the second
column. For this function, in addition to the first column, we need to define the first row,
otherwise, the output of the function would be different than what we expect here. The first
element of this first row is same as the first element of the first column, and the rest of the
elements should be set to zero.

toeplitz list = []
i t e r a t e from l a s t row to the f i r s t row
for i in range(F zero padded.shape[0]−1, −1, −1):
c = F zero padded[i, :] # copy i ’ th row o f t he F to c
r = np.r [c[0], np.zeros(I col num−1)]

t o e p l i t z f un c t i on i s in s c i p y . l i n a l g l i b r a r y
toeplitz m = toeplitz(c,r)
toeplitz list.append(toeplitz m)
print(’F ’+ str(i)+’\n’, toeplitz m)

7.5 Create doubly blocked toeplitz matrix

Now all these small toeplitz matrices should be arranged in a big doubly blocked toepltiz
matrix 5.
In this example F0, F1, F2 are corresponding toeplitz matrices for each row of the filter. They
should be filled in the doubly blocked toeplitz matrix in this way:

6

Convolution as Matrix Multiplication Ali Salehi

doubly blocked =

F0 0
F1 F0

F2 F1

 (10)

Number of columns in this symbolic matrix should be same as the number of rows in the
input signal I.
The following code stores the indexes of F0, F1, F2 in this format. This will be used to fill
out the doubly blocked toepltiz matrix later.

c = range(1, F zero padded.shape[0]+1)
r = np.r [c[0], np.zeros(I row num−1, dtype=int)]

doubly indices = toeplitz(c, r)
print(’doubly indices \n’, doubly indices)

’ ’ ’
doub l y i n d i c e s
[[1 0]
[2 1]
[3 2]]
’ ’ ’

Now let’s fill in the doubly blocked toepltiz matrix. Following code does this part:

shape o f one o f t ho s e sma l l t o e p l i t z mat r i c e s
h = toeplitz shape[0]∗doubly indices.shape[0]
w = toeplitz shape[1]∗doubly indices.shape[1]
doubly blocked shape = [h, w]
doubly blocked = np.zeros(doubly blocked shape)

t i l e t he t o e p l i t z matr ix
b h , b w = toeplitz shape # h i g h t & w i t h s o f each b l o c k
for i in range(doubly indices.shape[0]):
for j in range(doubly indices.shape[1]):
start i = i ∗ b h
start j = j ∗ b w
end i = start i + b h
end j = start j + b w
doubly blocked[start i: end i , start j:end j] =

toeplitz list[doubly indices[i,j]−1]

print(doubly blocked)
’ ’ ’

7

Convolution as Matrix Multiplication Ali Salehi

[3 0 . 0 . 0 . 0 . 0 . 0 .]
[4 0 . 30 . 0 . 0 . 0 . 0 .]
[0 . 40 . 30 . 0 . 0 . 0 .]
[0 . 0 . 40 . 0 . 0 . 0 .]
[1 0 . 0 . 0 . 30 . 0 . 0 .]
[2 0 . 10 . 0 . 40 . 30 . 0 .]
[0 . 20 . 10 . 0 . 40 . 3 0 .]
[0 . 0 . 20 . 0 . 0 . 4 0 .]
[0 . 0 . 0 . 10 . 0 . 0 .]
[0 . 0 . 0 . 20 . 10 . 0 .]
[0 . 0 . 0 . 0 . 20 . 1 0 .]
[0 . 0 . 0 . 0 . 0 . 2 0 .]
’ ’ ’

For this example the result will be the following matrix. I’ve colored parts of the matrix
that is related to each of the small toeplitz matrices.

doubly blocked =

30 0 0 0 0 0
40 30 0 0 0 0
0 40 30 0 0 0
0 0 40 0 0 0
10 0 0 30 0 0
20 10 0 40 30 0
0 20 10 0 40 30
0 0 20 0 0 40
0 0 0 10 0 0
0 0 0 20 10 0
0 0 0 0 20 10
0 0 0 0 0 20

(11)

7.6 Convert the input matrix to a vector

Now that the filter has converted to a doubly blocked Toeplitz matrix, we just need to
convert the input signal to a vector and multiply them.
All the rows of the input should be transposed to a column vector and stacked on top of
each other. The last row goes first!

I =

[
1 2 3
4 5 6

]
⇒ V ectoriaed I =

4
5
6
1
2
3

 (12)

The following function does the vectorization. I am sure that there are much simpler
ways to do so, but for the purpose of explanation, this function is implemented in this way.

8

Convolution as Matrix Multiplication Ali Salehi

def matrix to vector(input):
input h , input w = input.shape
output vector = np.zeros(input h∗input w ,

dtype=input.dtype)
f l i p t he inpu t matr ix up down
input = np.flipud(input)
for i,row in enumerate(input):
st = i∗input w
nd = st + input w
output vector[st:nd] = row

return output vector

7.7 Multiply doubly blocked toeplitz matrix with vectorized input signal

Do the matrix multiplication between these two matrices. In this example, the doubly
blocked Toeplitz matrix is 12 × 6 and the vectorized input is 6 × 1 so the result of the
multiplication is 12× 1.

ge t r e s u l t o f t h e c onvo l u t i on by matr ix mu p l t i p l i c a t i o n
result vector = np.matmul(doubly blocked , vectorized I)
print(’result vector: ’, result vector)

’ ’ ’
r e s u l t v e c t o r : [120 310 380 240 70 230 330 240 10 40 70 60]
’ ’ ’

7.8 Last step: reshape the result to a matrix form

From section 7.2 we know that the output of the convolution should be (m1 + m2 − 1) ×
(n1 + n2 − 1). First (n1 + n2 − 1) elements in the output vector form the last row of the
final output and the second (n1 +n2−1) elements go to the second-to-last row of the output
matrix. Repeat this process to form the final output matrix.

In this example n1 = 3 and n2 = 2, so every 4 element goes to one row of the output
matrix.

9

Convolution as Matrix Multiplication Ali Salehi

result vector =

120
310
380
240
70
230
330
240
10
40
70
60

⇒ output =

 10 40 70 60
70 230 330 240
120 310 380 240

 (13)

Following function performs this step:

def vector to matrix(input, output shape):
output h , output w = output shape
output = np.zeros(output shape, dtype=input.dtype)
for i in range(output h):
st = i∗output w
nd = st + output w
output[i, :] = input[st:nd]

f l i p t he ou tpu t matr ix up−down to g e t c o r r e c t r e s u l t
output=np.flipud(output)
return output

8 Compare the result with other convolution methods

We can compare the output of this method with convolve2d() function from the scipy library.

from scipy import signal

result = signal.convolve2d(I, F, "full")
print(’result: \n’, result)

10

Convolution as Matrix Multiplication Ali Salehi

’ ’ ’
r e s u l t :
[[10 40 70 60]
[70 230 330 240]
[120 310 380 2 4 0]]
’ ’ ’

As you can see the result on the same I and F matrices is same as the result of the
implemented method. The parameter ”full” is passed to the signal.convolve2d() function to
get the full convolution results.

9 To Do

• Add notebook to the project

• Rewrite an efficient code

• Extend it to handle multi-channel input and filters

• Make it work with parameters padding=’same’ or ’valid’

10 References

The steps explained here are based on Christophoros Nikou’s slides on Filtering in the
Frequency Domain (Circulant Matrices and Convolution)

This post on dsp.stackexchange also helped in understanding this algorithm.

11

 http://www.cs.uoi.gr/~cnikou/Courses/Digital_Image_Processing/2010-2011/Chapter_04c_Frequency_Filtering_(Circulant_Matrices).ppt
 http://www.cs.uoi.gr/~cnikou/Courses/Digital_Image_Processing/2010-2011/Chapter_04c_Frequency_Filtering_(Circulant_Matrices).ppt
https://dsp.stackexchange.com/questions/35373/convolution-as-a-doubly-block-circulant-matrix-operating-on-a-vector/35376#35376

	What is the purpose?
	Why do we do that?
	What is in this document?
	What is a Toeplitz matrix?
	One more definition: Doubly Blocked Toeplitz mtrix
	Is this Convolution or Cross Correlation?
	Step by Step
	Input and Filter
	Calculate the final output size
	Zero-pad the filter matrix
	Toeplitz matrix for each row of the zero-padded filter
	Create doubly blocked toeplitz matrix
	Convert the input matrix to a vector
	Multiply doubly blocked toeplitz matrix with vectorized input signal
	Last step: reshape the result to a matrix form

	Compare the result with other convolution methods
	To Do
	References

